Skip to main content

Integration by Parts

Integration by Parts

Integration by parts is a technique based on the product rule for differentiation. The formula is:

udv=uvvdu\int u dv = uv - \int v du

The choice of uu and dvdv is crucial, and differentiating uu and integrating dvdv gives us dudu and vv, respectively.

Example I

xexdx\int x e^{-x} \, dx

Let u=xu = x which implies du=dxdu = dx.
Choose dv=exdxdv = e^{-x} dx then v=exv = -e^{-x}.

By the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du, we get:

xexdx=uvvdu\int x e^{-x} \, dx = uv - \int v \, du xexdx=xexexdx\int x e^{-x} \, dx = -x e^{-x} - \int -e^{-x} \, dx

Integrating ex-e^{-x} gives us exe^{-x}, hence:

xexdx=xex+ex+C\int x e^{-x} \, dx = -x e^{-x} + e^{-x} + C

Where CC is the constant of integration.

Example II

35ln(x)dx\int_{3}^{5} \ln(x) \, dx

Let u=ln(x)u = \ln(x) which implies du=1xdxdu = \frac{1}{x}dx.
Choose dv=dxdv = dx then v=xv = x.

Using the integration by parts formula abudv=uvababvdu\int_{a}^{b} u \, dv = uv \bigg|_{a}^{b} - \int_{a}^{b} v \, du, we obtain:

35ln(x)dx=xln(x)3535x1xdx\int_{3}^{5} \ln(x) \, dx = x\ln(x) \bigg|_{3}^{5} - \int_{3}^{5} x \, \frac{1}{x} \, dx

Simplifying the integral 35x1xdx\int_{3}^{5} x \, \frac{1}{x} \, dx to 35dx\int_{3}^{5} dx, we have:

35ln(x)dx=xln(x)3535dx\int_{3}^{5} \ln(x) \, dx = x\ln(x) \bigg|_{3}^{5} - \int_{3}^{5} dx 35ln(x)dx=xln(x)35x35\int_{3}^{5} \ln(x) \, dx = x\ln(x) \bigg|_{3}^{5} - x \bigg|_{3}^{5}

Subtracting 535 - 3 from 5ln(5)3ln(3)5\ln(5) - 3\ln(3), the final result is:

35ln(x)dx=5ln(5)3ln(3)(53)\int_{3}^{5} \ln(x) \, dx = 5\ln(5) - 3\ln(3) - (5 - 3) 35ln(x)dx=5ln(5)3ln(3)2\int_{3}^{5} \ln(x) \, dx = 5\ln(5) - 3\ln(3) - 2

Trigonometric Substitutions in Integration

Substitutions Based on Quadratic Form

Case 1: a2b2x2\sqrt{a^2 - b^2x^2}

  • Substitution: x=absin(θ)x = \frac{a}{b} \sin(\theta)
  • Identity: cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta)

Case 2: b2x2a2\sqrt{b^2x^2 - a^2}

  • Substitution: x=absec(θ)x = \frac{a}{b} \sec(\theta)
  • Identity: tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1

Case 3: a2+b2x2\sqrt{a^2 + b^2x^2}

  • Substitution: x=abtan(θ)x = \frac{a}{b} \tan(\theta)
  • Identity: sec2(θ)=1+tan2(θ)\sec^2(\theta) = 1 + \tan^2(\theta)

Example

16x249x2dx\int \frac{16}{x^2 \sqrt{4-9x^2}} \, dx

Let x=23sin(θ)x = \frac{2}{3} \sin(\theta) which implies dx=23cos(θ)dθdx = \frac{2}{3}\cos(\theta)d\theta.

49x2=44sin2(θ)=4cos2(θ)=2cos(θ)\sqrt{4-9x^2}=\sqrt{4-4\sin^2(\theta)}=\sqrt{4\cos^2(\theta)}= 2 \mid \cos(\theta) \mid

In this case we have 49x2=2cos(θ)\sqrt{4-9x^2} = 2\cos(\theta)

16x249x2dx=16(23sin(θ))22cos(θ)23cos(θ)dθ=12sin2(θ)dθ \int \frac{16}{x^2 \sqrt{4-9x^2}} \, dx = \int \frac{16}{\left(\frac{2}{3}\sin(\theta)\right)^2 \cdot 2\cos(\theta)} \cdot \frac{2}{3}\cos(\theta) \, d\theta = \int \frac{12}{\sin^2(\theta)} \, d\theta 16(23sin(θ))22cos(θ)23cos(θ)dθ=12csc2(θ)dθ\int \frac{16}{\left(\frac{2}{3}\sin(\theta)\right)^2 \cdot 2\cos(\theta)} \cdot \frac{2}{3}\cos(\theta) \, d\theta = \int 12 \csc^2(\theta) \, d\theta

This simplification uses the identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 and the definition of csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}.

The antiderivative of csc2(θ)\csc^2(\theta) is cot(θ)- \cot(\theta). So, the evaluation is:

12csc2(θ)dθ=12cot(θ)+C\int 12 \csc^2(\theta) \, d\theta = -12 \cot(\theta) + C

Using Right Triangle Trigonometry

To convert back to xx, we use the right triangle relation where sin(θ)=3x2\sin(\theta) = \frac{3x}{2} from the original substitution.

The triangle formed by the substitution suggests that:

cot(θ)=49x23x\cot(\theta) = \frac{\sqrt{4 - 9x^2}}{3x}

Final Integral in terms of X

Substituting cot(θ)\cot(\theta) back into the integral expression:

12cot(θ)+C=449x21x+C-12 \cot(\theta) + C = -4\sqrt{4 - 9x^2} \frac{1}{x} + C

Thus, the final antiderivative in terms of xx is:

16x249x2dx=449x2x+C\int \frac{16}{x^2 \sqrt{4 - 9x^2}} \, dx = -4 \frac{\sqrt{4 - 9x^2}}{x} + C

Partial Fraction Decomposition for Integration

Concept

Partial fractions is a technique used to simplify the integration of rational expressions, P(x)Q(x)\frac{P(x)}{Q(x)}, where the degree of P(x)P(x) is less than the degree of Q(x)Q(x).

Steps for Decomposition

  1. Factor the denominator Q(x)Q(x) as completely as possible.
  2. Write down a partial fraction for each factor in Q(x)Q(x) using constants to represent the numerators.
  3. Solve for the constants by clearing the denominators and equating coefficients for corresponding powers of xx.

Table for Decomposition

Factor of Q(x)Q(x)Term in Partial Fraction Decomposition (P.F.D)
ax+bax + bAax+b\frac{A}{ax + b}
ax2+bx+cax^2 + bx + cAx+Bax2+bx+c\frac{Ax + B}{ax^2 + bx + c}
(ax+b)k(ax + b)^kA1ax+b+A2(ax+b)2++Ak(ax+b)k\frac{A_1}{ax + b} + \frac{A_2}{(ax + b)^2} + \cdots + \frac{A_k}{(ax + b)^k}
(ax2+bx+c)k(ax^2 + bx + c)^kA1x+B1ax2+bx+c++Akx+Bk(ax2+bx+c)k\frac{A_1x + B_1}{ax^2 + bx + c} + \cdots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}

Example of Integration Using Partial Fraction

7x2+13x(x1)(x2+4)dx\int \frac{7x^2 + 13x}{(x - 1)(x^2 + 4)} \, dx

Partial Fraction Decomposition

To decompose the function, assume it can be written as the sum of fractions:

7x2+13x(x1)(x2+4)=Ax1+Bx+Cx2+4\frac{7x^2 + 13x}{(x - 1)(x^2 + 4)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 4}

Where AA, BB, and CC are constants to be determined.

Finding Constants

Multiply both sides by the common denominator (x1)(x2+4)(x - 1)(x^2 + 4) and equate the numerators:

7x2+13x=A(x2+4)+(Bx+C)(x1)7x^2 + 13x = A(x^2 + 4) + (Bx + C)(x - 1)

Expanding the right side and collecting like terms gives:

7x2+13x=(A+B)x2+(CB)x+4AC7x^2 + 13x = (A + B)x^2 + (C - B)x + 4A - C

Setting Coefficients Equal

Match the coefficients of corresponding powers of xx from both sides of the equation:

x2:A+B=7x:CB=13Constant:4AC=0\begin{align*} x^2: & \quad A + B = 7 \\ x: & \quad C - B = 13 \\ \text{Constant}: & \quad 4A - C = 0 \end{align*}

Solving the System of Equations

Solve this system of linear equations to find the values of AA, BB, and CC:

A=4B=3C=16\begin{align*} A & = 4 \\ B & = 3 \\ C & = 16 \end{align*}

Rewriting the Integral

Substitute the values of AA, BB, and CC back into the partial fractions:

4x1+3x+16x2+4dx\int \frac{4}{x - 1} + \frac{3x + 16}{x^2 + 4} \, dx

Integrating Each Term

  1. For 4x1\frac{4}{x - 1}, the antiderivative is 4lnx14 \ln|x - 1|.
  2. For 3xx2+4\frac{3x}{x^2 + 4}, use substitution u=x2+4u = x^2 + 4 to find the antiderivative 32lnx2+4\frac{3}{2} \ln|x^2 + 4|.
  3. For 16x2+4\frac{16}{x^2 + 4}, recognize it as the derivative of 8tan1(x2)8\tan^{-1}\left(\frac{x}{2}\right) because ddx[tan1(x2)]=2x2+4\frac{d}{dx}\left[\tan^{-1}\left(\frac{x}{2}\right)\right] = \frac{2}{x^2 + 4}.

Final Answer

Combine all antiderivatives and add the constant of integration to get the final solution:

7x2+13x(x1)(x2+4)dx=4lnx1+32lnx2+4+8tan1(x2)+C\int \frac{7x^2 + 13x}{(x - 1)(x^2 + 4)} \, dx = 4 \ln|x - 1| + \frac{3}{2} \ln|x^2 + 4| + 8\tan^{-1}\left(\frac{x}{2}\right) + C